Monoamine oxidase A-mediated enhanced catabolism of norepinephrine contributes to adverse remodeling and pump failure in hearts with pressure overload.

نویسندگان

  • Nina Kaludercic
  • Eiki Takimoto
  • Takahiro Nagayama
  • Ning Feng
  • Edwin W Lai
  • Djahida Bedja
  • Kevin Chen
  • Kathleen L Gabrielson
  • Randy D Blakely
  • Jean C Shih
  • Karel Pacak
  • David A Kass
  • Fabio Di Lisa
  • Nazareno Paolocci
چکیده

RATIONALE Monoamine oxidases (MAOs) are mitochondrial enzymes that catabolize prohypertrophic neurotransmitters, such as norepinephrine and serotonin, generating hydrogen peroxide. Because excess reactive oxygen species and catecholamines are major contributors to the pathophysiology of congestive heart failure, MAOs could play an important role in this process. OBJECTIVE Here, we investigated the role of MAO-A in maladaptive hypertrophy and heart failure. METHODS AND RESULTS We report that MAO-A activity is triggered in isolated neonatal and adult myocytes on stimulation with norepinephrine, followed by increase in cell size, reactive oxygen species production, and signs of maladaptive hypertrophy. All of these in vitro changes occur, in part, independently from alpha- and beta-adrenergic receptor-operated signaling and are inhibited by the specific MAO-A inhibitor clorgyline. In mice with left ventricular dilation and pump failure attributable to pressure overload, norepinephrine catabolism by MAO-A is increased accompanied by exacerbated oxidative stress. MAO-A inhibition prevents these changes, and also reverses fetal gene reprogramming, metalloproteinase and caspase-3 activation, as well as myocardial apoptosis. The specific role of MAO-A was further tested in mice expressing a dominant-negative MAO-A (MAO-A(neo)), which were more protected against pressure overload than their wild-type littermates. CONCLUSIONS In addition to adrenergic receptor-dependent mechanisms, enhanced MAO-A activity coupled with increased intramyocardial norepinephrine availability results in augmented reactive oxygen species generation, contributing to maladaptive remodeling and left ventricular dysfunction in hearts subjected to chronic stress.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Loss of p47phox subunit enhances susceptibility to biomechanical stress and heart failure because of dysregulation of cortactin and actin filaments.

RATIONALE The classic phagocyte nicotinamide adenine dinucleotide phosphate oxidase (gp91(phox) or Nox2) is expressed in the heart. Nox2 activation requires membrane translocation of the p47(phox) subunit and is linked to heart failure. We hypothesized that loss of p47(phox) subunit will result in decreased reactive oxygen species production and resistance to heart failure. OBJECTIVE To defin...

متن کامل

Potassium deficiency and cardiac catecholamine metabolism in the rat.

Norepinephrine metabolism, arterial blood pressure, and electrolytes were studied in rats maintained on either potassium-deficient or control diets. After 3 weeks on the test diets, the arterial blood pressure was significantly lower and the ratio of [Na] to ,[K] in cardiac tissue was significantly higher in potassiumdeficient rats as compared to controls. Ten minutes after intravenous injectio...

متن کامل

TRPC3-GEF-H1 axis mediates pressure overload-induced cardiac fibrosis

Structural cardiac remodeling, accompanying cytoskeletal reorganization of cardiac cells, is a major clinical outcome of diastolic heart failure. A highly local Ca2+ influx across the plasma membrane has been suggested to code signals to induce Rho GTPase-mediated fibrosis, but it is obscure how the heart specifically decodes the local Ca2+ influx as a cytoskeletal reorganizing signal under the...

متن کامل

A Peroxidase-linked Spectrophotometric Assay for the Detection of Monoamine Oxidase Inhibitors

To develop a new more accurate spectrophotometric method for detecting monoamine oxidase inhibitors from plant extracts, a series of amine substrates were selected and their ability to be oxidized by monoamine oxidase was evaluated by the HPLC method and a new substrate was used to develop a peroxidase-linked spectrophotometric assay. 4-(Trifluoromethyl) benzylamine (11) was proved to be an exc...

متن کامل

Monoamine Oxidase Is Overactivated in Left and Right Ventricles from Ischemic Hearts: An Intriguing Therapeutic Target

Growing evidence indicates that reactive oxygen species (ROS) may play a key role in human heart failure (HF). Monoamine oxidase (MAO) is emerging as a major ROS source in several cardiomyopathies. However, little is known about MAO activity in human failing heart and its relationship with redox imbalance. Therefore, we measured MAO activity in the left (LV) and in the right (RV) ventricle of h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation research

دوره 106 1  شماره 

صفحات  -

تاریخ انتشار 2010